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It is proposed that a step or piecewise linear approximation of the intensity of the heat flux be used
for calculating convolution integrals in the solution of the Ling heat problem.

Introduction. In 1965, Professor Ling and his assistant Mow from Rensselaer Polytechnic Institute
(USA) obtained a solution of a plane quasistationary problem of heat conduction for a half-space that is
heated, on a free surface, by a fast-moving linear distributed heat flux [1]. In connection with successful
further application of this solution to modeling thermal regimes of various tribotechnical processes (determi-
nation of the coefficients of the distribution of heat between the elements of friction pairs [2–5], grinding [6,
7], and heat generation during the sliding of a wheel over a rail [8–10], etc.) the above problem is known in
scientific and technical literature as the "Ling problem" [11]. In spite of a more than 30-year-long history the
Ling problem still attracts attention, first, due to an increasingly greater number of new fields of its applica-
tion, second, due to the simplicity of the representation of the solution, and, third, due to the necessity of
investigating the solution (integration) for different heat-flux densities. This is precisely the reason for the
appearance of the given work.

We also note that the Ling problem is a particular (for large values of the Pe′clet number) case of the
well-known Jaeger problem [12].

Formulation and Solution of the Ling Heat Problem. Let us consider the plane boundary-value
problem of quasistationary heat conduction
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T → 0   for   √x2 + y2  → ∞ . (3)

For heat problems of friction we assume that the intensity of the frictional heat flux q is equal to the
specific power of the friction forces [11]

q (x) = fVp (x) . (4)

We denote
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With account for equality (4) and notation (5) Eq. (1) and boundary conditions (2)–(3) will take the
form
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Let us consider the case of a fast-moving heat source where Pe > 5 [1]. The gradient of the heat flux
in the direction of motion can be disregarded, and the heat-conduction equation (6) will take the form
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 ,   _ξ_ < ∞ ,   η > 0 . (10)

Equation (10) and boundary conditions (7)–(8) are a mathematical representation of the Ling heat
problem.

The solution of the boundary-value problem of quasistationary heat conduction (10) and (7)–(8) is
obtained using the integral Fourier transformation [1]
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To calculate the integral in the right-hand side of relation (11), it is proposed in [13] that the function
p∗ (τ) be expanded in Fourier sine- or cosine-series with subsequent accurate determination of the coefficients
of the expansion and summation. However the expressions for calculating the coefficients of the Fourier se-
ries are so complicated, and, what is more, are represented in complex form, that we could not find a single
work where the given procedure was used. Most frequently the authors restricted themselves to numerical
integration of (11) for specific distributions of the contact pressure p∗ (τ).

We propose a procedure for integrating the solution (11) in the case of an arbitrary smooth function
p∗ (τ) using the properties of finite step and piecewise-linear functions [14].
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Step Approximation. We introduce on the segment [0, b] the uniform grid
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The uniform error of the approximation (14) and (15) is O(δτ) [14].
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For η = 0, from relation (18) we have
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temperature of the half-space surface T(ξ) ≡ T(ξ, 0)
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which was obtained earlier [8].
Piecewise-Linear Approximation. Let each node τi, i = 0, 1, 2, ..., n of the grid (13) correspond to

the piecewise-linear function ("cover-function")
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Taking into account relation (19), from formula (26) for η = 0 we obtain
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Numerical Analysis and Conclusions. In the case of ideally smooth surfaces of contacting bodies,
one most frequently uses the elliptical (Hertz) distribution of the contact pressure [15]
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If the working surfaces of the bodies are rough, a superposition of the Hertz (30) and oscillating
distributions is taken. We take, as an example, cosine fluctuations of pressure with a wavelength of 5π and
an amplitude of p0

 ⁄ 4 of the form [8]
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On heavily loaded contacts when the materials of the bodies are in a nearly plastic state the pressure
equalizes:

p (x) = 
π
4

 p0 = const ,   0 ≤ x ≤ 2a . (32)

For the constant pressure (32), the temperature field in the half-space is found by direct integration of
the solution (11) and (12) using the value (18) of the integral (17). As a result we obtain
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and the constant Λ has the form of (9).
The distribution of the temperature (33)–(35) was used to test the approximate procedure proposed.

For the Hertz (30) and oscillating (31) distributions of the contact pressure, the temperature field in the half-
space was investigated numerically by formulas (16)–(20) in the case of the step approximation of the pres-
sure (14) and (15) or by formulas (23)–(29) for its piecewise-linear approximation (22).

Fig. 1. Distribution of the dimensionless surface temperature T∗ : 1) con-
stant distribution of the contact pressure (32); 2) Hertz distribution (30).

Fig. 2. Distribution of the dimensionless contact pressure p∗  and surface
temperature T∗ : 1) oscillating distribution (31) of the contact pressure; 2)
Hertz distribution (30).
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The distribution of the dimensionless surface temperature T∗ (ξ) = T(ξ, 0)/Λ is shown in Fig. 1. We
note that Tmax of (35) is the maximum temperature at the constant pressure (32), which, as is obvious from
the figure, is attained at the point ξ = 1 (x = 2a is the point of departure from the heating zone). In the case
of the Hertz pressure (30), the maximum value of the surface temperature is attained within the heating re-
gion at the point x = 1.652a and is equal to Tmax ≅  0.872Λ, which amounts to 98.4% of Tmax of (35).

Distributions of the dimensionless oscillating (31) and Hertz (30) pressures and the corresponding sur-
face temperatures are shown in Fig. 2. Here it is of interest to note that a 25% difference in the maximum
values of these pressures involves just a 6% difference in the corresponding maximum temperatures.

Figure 3 illustrates the change in the dimensionless temperature T∗ (ξ, η) = T(ξ, η)Λ depthwise along
the normal to the surface of the half-space. It is seen that the temperature under the heating region
0 ≤ ξ ≤ 1 decreases over depth more rapidly that the temperature under the free surface ξ > 1. In the cross
section ξ = 1, the temperature field becomes insignificant for y > 3d, where the parameter d is the effective
depth of penetration of heat in the corresponding nonstationary problem of heat conduction [8].

NOTATION

T, temperature; T∗ (ξ, η) = T(ξ, η)/Λ, dimensionless temperature; Λ, constant determined from formula
(9) and having the dimensions of temperature; a, halfwidth of the heating region; K, thermal-conductivity
coefficient; k, thermal-diffusivity coefficient; V, velocity of motion of the linear heat flux; q(x), intensity of
the heat flux; (x, y), axes of the orthogonal Euler coordinate system; f, coefficient of friction; p, contact pres-
sure; p0, characteristic value of the contact pressure; d, effective depth of heating; Pe, Pe′clet parameter; P,
linear pressing force; H(⋅), Heaviside unit function; erf(⋅), probability integral; erfc(⋅) = 1 − erf(⋅).
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